skip to main content


Search for: All records

Creators/Authors contains: "Lu, Guoqing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix), collectively called bigheaded carps, are cyprinids native mainly to China and have been introduced to over 70 countries. Paleontological and molecular phylogenetic analyses demonstrate bighead and silver carps originated from the Yangtze‐Huanghe River basins and modern populations may have derived from the secondary contact of geographically isolated fish during the last glacial events. Significant genetic differences are found among populations of native rivers (Yangtze, Pearl, and Amur) as well as introduced/invasive environments (Mississippi R., USA and Danube R., Hungary), suggesting genetic backgrounds and ecological selection may play a role in population differentiation. Population divergence of bighead carp or silver carp has occurred within their native rivers, whereas, within the Mississippi River Basin (MRB)—an introduced region, such genetic differentiation is likely taking place at least in silver carp. Interspecific hybridization between silver and bighead carps is rare within their native regions; however, extensive hybridization is observed in the MRB, which could be contributed by a shift to a more homogenous environment that lacks reproductive isolation barriers for the restriction of gene flow between species. The wild populations of native bighead and silver carps have experienced dramatic declines; in contrast, the introduced bigheaded carps overpopulate the MRB and are considered two invasive species, which strongly suggests fishing capacity (overfishing and underfishing) be a decisive factor for fishery resource exploitation and management. This review provides not only a global perspective of evolutionary history and population divergence of bigheaded carps but also a forum that calls for international research collaborations to deal with critical issues related to native population conservation and invasive species control.

     
    more » « less
  2. Abstract Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages. 
    more » « less
  3. Abstract

    The genetic paradox of biological invasions is complex and multifaceted. In particular, the relative role of disparate propagule sources and genetic adaptation through postintroduction hybridization has remained largely unexplored. To add resolution to this paradox, we investigate the genetic architecture responsible for the invasion of two invasive Asian carp species, bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix) (bigheaded carps) that experience extensive hybridization in the Mississippi River Basin (MRB). We sequenced the genomes of bighead and silver carps (~1.08G bp and ~1.15G bp, respectively) and their hybrids collected from the MRB. We found moderate‐to‐high heterozygosity in bighead (0.0021) and silver (0.0036) carps, detected significantly higher dN/dS ratios of single‐copy orthologous genes in bigheaded carps versus 10 other species of fish, and identified genes in both species potentially associated with environmental adaptation and other invasion‐related traits. Additionally, we observed a high genomic similarity (96.3% in all syntenic blocks) between bighead and silver carps and over 90% embryonic viability in their experimentally induced hybrids. Our results suggest intrinsic genomic features of bigheaded carps, likely associated with life history traits that presumably evolved within their native ranges, might have facilitated their initial establishment of invasion, whereasex-situinterspecific hybridization between the carps might have promoted their range expansion. This study reveals an alternative mechanism that could resolve one of the genetic paradoxes in biological invasions and provides invaluable genomic resources for applied research involving bigheaded carps.

     
    more » « less